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Abstract: Computer models and simpler methods must be used to reliably determine total maximum daily loads (TMDLs) for impaired
waters of the US. Models are also useful to develop implementation plans that allocate load reductions to meet water quality standards.
During model selection, practical considerations sometimes override the fundamental requirements of parsimony and defensibility. For
the first time, a rationale for efficiently selecting reliable models for TMDL determinations is presented in this paper, based on deliberations
of the TMDL Analysis and Modeling Task Committee of the Environmental and Water Resources Institute of ASCE. This protocol is based
on technical criteria (waterbody, water quality, and data requirements) and management constraints (state plans and priorities, stakeholder and
expert engagement, and state authority to manage pollution sources and state allocation priorities). Uncertainties due to changes in economic
activity, population, land use, climate, sea level, and policies are also included. To reduce wasteful trial-and-error iterations during model
selection, an optimal conceptual modeling framework is identified and subsequently refined in a flowchart based on practical considerations.
The proposed protocol holistically defines the state of the science in model selection and is anticipated to soon define the state of the practice
for TMDL determination. DOI: 10.1061/(ASCE)HE.1943-5584.0002102. This work is made available under the terms of the Creative
Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

A total maximum daily load (TMDL) defined in Paragraph 303(d)
of the United States Clean Water Act (CWA) of 1972 (33 US
Code §§ 1313 et seq.) is the maximum allowable pollutant load-
ing or waste assimilative capacity for one or more water quality

constituents such as nutrients, pathogens, algae, dissolved oxygen,
heavy metals, emerging contaminants, pH, heat, and trash that enter
a water segment, so that water quality standards are met (USEPA
2018c). The allocation of the TMDL is the basis of controlling and
managing both point-source and nonpoint-source pollution. The
control of pollution using the TMDL approach, if carefully con-
sidered, can provide socioeconomic and environmental benefits
that help revive a sagging economy, bring back cultural vibrancy,
and resurrect communities or even whole cities (e.g., Cropper and
Isaac 2011). Nevertheless, the determinations of TMDLs typically
require sophisticated hydrologic and water quality models for
watersheds and hydrodynamic and water quality models for receiv-
ing water bodies, and intensive synoptic or water segmentwide and
watershedwide data collection to calibrate and validate the models
and reliably relate impairments to specific pollutant loads. These
TMDL determinations typically require an optimal balance of fo-
cused modeling expertise, financial support, and sufficient time.
For the first time, in this paper, we holistically integrate the funda-
mental scientific principles of model selection with a comprehen-
sive set of practical criteria to rationally provide guidance using an
efficient model selection protocol.

The objective of this study was to derive a carefully structured
protocol and a corresponding flowchart to guide model selection
for the determination and implementation of TMDLs. Model selec-
tion often has been heuristic and ad hoc as a result of conflicting state
and federal policies that occur despite the cooperative federalism re-
quired by the CWA on TMDL determination and implementation
(Brudney 2017). Moreover, in many instances, the dynamic and spa-
tial variability in physical, chemical, and biological characteristics of
the impaired waterbody and contributing watershed have not been
adequately defined a priori in order to support a definitive and unique
model choice.
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We manually searched through all of the 315 USEPA-approved
reports describing the TMDLs determined for 5,523 listed water
segments published between 2015 and 2020 (Table 1) to look
for the types of models used and the rationale for model selection.
We found that there is significant variability in the use of different
types of models [Fig. 1(a)]. We also found that in 109 reports (35%
of the reports), there was no justification given for the use of the
model that was applied [Fig. 1(b)]. In 31 reports (10% of the re-
ports), we did not find that there was a data collection plan to sup-
port the TMDL process [Fig. 1(c)]. These findings clearly indicate
that systematic guidance for model selection is necessary.

In this model selection protocol, we recommend testing an op-
timal model satisfying the fundamental principles of parsimony
(Thomann and Mueller 1987) and defensibility (Martin and
McCutcheon 1999), along with various practical criteria, in order
to organize conflicting information and minimize resource wastage
when selecting a TMDL model. The heuristic and ad hoc selection
of TMDL models can be overly resource-intensive and inefficient
if the calibration of the initial model choice proves unreliable. Due
to the early proliferation of models developed for purposes other
than TMDL determination that have rarely been peer reviewed
and tested (McCutcheon 1981, 1983a, b), this process becomes
severely iterative. Additionally, TMDL implementation planning
may require resource-intensive watershed-scale simulations to dis-
tinguish manageable classes of nonpoint sources and background
loading (Stow et al. 2007).

Therefore, a critical professional judgement in model selection
is whether to start with the more intensive model necessary for im-
plementation planning or to use a simpler model to determine and
allocate the TMDL and then switch to the more elaborate model for
implementation planning. In this protocol, we emphasize open
stakeholder and expert collaboration to expend the available resour-
ces that are consistent with the collaborative federalism required by
the CWA.

This protocol is unique in organizing both technical criteria such
as the type of waterbody, impairment and synoptic data require-
ments and management criteria such as state plans and priorities,
stakeholder and expert engagement, and state authority to manage
pollution sources and state allocation priorities in the model selec-
tion protocol. The protocol is based on the lean design principle, an
extension of the Toyota Way (Ballard and Zabelle 2000). In this
approach, we recommend first logically defining the model
selection tasks. Subsequently, we structure the workflow to avoid
redundant flows of information. Finally, we recommend structuring
the model selection process in a manner that minimizes repetition
in the workflow to reduce value loss during model selection
(Poppendieck and Poppendieck 2003).

We do not enumerate a comprehensive list of models useful for
determining, allocating and implementation planning of TMDLs
in this paper. The TMDL Analysis and Modeling Task Committee
of the Environmental and Water Resources Institute of ASCE
(ASCE TMDL Analysis and Modeling Task Committee 2017;
Borah et al. 2019b; ASCE TMDL Analysis and Modeling Task
Committee, forthcoming) has compiled a list of models that have
been used to determine TMDLs. The ASCE TMDL Analysis and
Modeling Task Committee has also covered other vital steps in the
TMDL determination process including model calibration, valida-
tion (also known as confirmation), uncertainty analysis, and deter-
mination of the margin of safety; described data sources used in
TMDL modeling including in situ data, geographical information
systems (GIS), and remote sensing; and the state-of-the-practice in
modeling for TMDL determination, allocation and implementation
planning (ASCE TMDL Analysis and Modeling Task Committee
2017, forthcoming). Additionally, the ASCE TMDL Analysis and

Modeling Task Committee has also published a collection of 15
research articles on the state-of-the-art in these topics in the Journal
of Hydrologic Engineering (Borah et al. 2019b).

At the same time, no attempt has been made in the past to review
the more than 70,000 USEPA-approved TMDL documents and
build a comprehensive catalog of models and analytical procedures
(Quinn et al. 2019). To the best of our knowledge, our compilation
of TMDL reports in Table 1 and derivation of statistics shown in
Fig. 1 are the first attempts to closely look at and analyze models
used in TMDLs and use these findings systematically in the model
selection process. Very few receiving water quality models have
been actually peer-reviewed, and in most cases, the stage of model
development ranging from research models to fully developed
models optimized for the practice of TMDL determination has
not been defined (e.g., NCASI 1982; McCutcheon 1983b). More
recent evaluations include selections of watershed and receiving
water quality models that were heuristically chosen for TMDL de-
termination (Martin and McCutcheon 1999; Borah and Bera 2003,
2004; Shoemaker et al. 2005; Muñoz-Carpena et al. 2006; Moriasi
et al. 2012, 2015; Martin et al. 2015; ASCE TMDL Analysis and
Modeling Task Committee 2017; Borah et al. 2019a; Camacho
et al. 2019; Quinn et al. 2019; Zhang and Quinn 2019; Yuan
et al. 2020).

Modeling for TMDL determination is seldom a straightforward
process, with a trade-off between fundamental principles of model
selection and practical considerations. Specific types of water-
bodies and particular impairments require site-specific domain
expertise that may result in the fundamental model selection prin-
ciples being overridden. Just selecting the best possible model
based on fundamental criteria of parsimony and defensibility may
not be a viable option given modeling skill and resource con-
straints. At the same time, prevailing practice, lack of requisite data,
ease of justifying a model, and other such logistical issues should
not be the only factors in selecting an appropriate TMDL model. To
balance the trade-off between these aspects of model selection in a
systematic manner, a protocol such as the one presented here is
required. When used with modeling experience and site-specific
knowledge, this protocol will be useful to researchers and practi-
tioners alike in selecting a reliable TMDL model that can withstand
scientific scrutiny.

Key Steps in TMDL Determination, Allocation, and
Implementation Planning

The USEPA (2018c) defines the TMDL for an impaired waterbody
in the US as follows:

TMDL ¼
X

WLAþ
X

LAþMOS ð1Þ

where WLA = waste load allocation for each point source; LA =
load allocation for each category of nonpoint sources, as well as the
difficult-to-manage background loads that are not directly caused
by human activities, and a reserve capacity for reasonably antici-
pated point-source and nonpoint-source load increases; and MOS =
margin of safety that conservatively accounts for simulation and
measurement uncertainties. The need for a reserve capacity is due
to local changes in human population, economic activity and land
use and land cover (LULC), as well as changes in climate, sea level,
and federal and state environmental policy.

The CWA requires the states or other jurisdictions to determine a
TMDL for each impaired waterbody. Even though private con-
tracting firms or universities have developed about 20% of the
TMDLs over the last 5 years, it is still the responsibility of the states
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Table 1. TMDL reports approved by the US Environmental Protection Agency between 2015 and 2020

Statea Number of reports Number of TMDLs Source

Alabama (AL) 3 7 USEPA ATTAINS
Alaska (AK) 3 6 ADEC (2020)
Arizona (AZ) 3 11 USEPA ATTAINS
Arkansas (AR) 5 23 ADEQ (2020)
California (CA) 9 335 USEPA ATTAINS
Colorado (CO) 4 16 USEPA ATTAINS
Washington, DC (DC) 2 41 District of Columbia Department of Energy and Environment (2021)
Florida (FL) 10 28 Florida Department of Environmental Protection (2020)
Georgia (GA) 40 251 Georgia Environmental Protection Division (2020)
Hawaii (HI) 1 3 Hawaii Department of Health (2020)
Idaho (ID) 11 80 Idaho Department of Environmental Quality (2020)
Illinois (IL) 19 71 Illinois Environmental Protection Agency (2020)
Indiana (IN) 5 285 Indiana Department of Environmental Management (2020)
Iowa (IA) 11 61 Iowa Department of Natural Resources (2020)
Kansas (KS) 9 104 USEPA ATTAINS
Kentucky (KY) 4 45 Kentucky Energy and Environment Cabinet (2020)
Louisiana (LA) 1 1 USEPA ATTAINS
Maine (ME) 1 21 USEPA Region 1
Massachusetts (MA) 25 99 USEPA Region 1
Michigan (MI) 2 2,107 USEPA ATTAINS
Minnesota (MN) 22 481 USEPA ATTAINS
Mississippi (MS) 1 2 USEPA ATTAINS
Missouri (MO) 4 5 USEPA ATTAINS
Montana (MT) 4 64 USEPA ATTAINS
New Hampshire (NH) 6 8 New Hampshire Department of Environmental Services (2020)
New Jersey (NJ) 1 3 New Jersey Department of Environmental Protection (2021)
New Mexico (NM) 5 27 USEPA ATTAINS
New York (NY) 7 7 New York Department of Environmental Conservation (2020)
North Carolina (NC) 3 10 North Carolina Department of Environmental Quality (2020)
North Dakota (ND) 4 9 USEPA ATTAINS
Oklahoma (OK) 3 14 Oklahoma Water Quality Division (2020)
Oregon (OR) 4 7 Oregon Department of Environmental Quality (2020)
Rhode Island (RI) 1 2 Rhode Island Department of Environmental Management (2020)
South Carolina (SC) 5 26 USEPA ATTAINS
South Dakota (SD) 2 77 USEPA ATTAINS
Tennessee (TN) 18 402 Tennessee Department of Environment and Conservation (2020)
Texas (TX) 11 135 Texas Commission on Environmental Quality (2020)
Utah (UT) 12 23 Utah Department of Environmental Quality (2020)
Vermont (VT) 2 2 USEPA ATTAINS
Virginia (VA) 11 97 Virginia Department of Environmental Quality (2020)
Washington (WA) 9 265 Washington State Department of Ecology (2020)
West Virginia (WV) 8 236 West Virginia Department of Environmental Protection (2020)
Wisconsin (WI) 3 7 Wisconsin Department of Natural Resources (2020)
Wyoming (WY) 1 19 Wyoming Department of Environmental Quality (2020)
Total 315 5,523 —

Source: Data from USEPA (2020a).
aData not available for Connecticut, Delaware, Maryland, Nebraska, Nevada, Ohio, and Pennsylvania.

(a) (b) (c)

Fig. 1. Patterns observed in total maximum daily load model selection in the US between 2015 and 2020: (a) model type; (b) rationale for choice; and
(c) synoptic data collection.
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or other jurisdictions to submit the TMDL in a water quality man-
agement document to the USEPA. This document must provide de-
tails on the TMDL determination and load reduction/allocations. The
USEPA also recommends that this document contain a TMDL im-
plementation plan, a monitoring plan to track the performance of
the TMDL, reasonable assurances on the reduction of nonpoint-
source loads, and adequate stakeholder engagement (USEPA 2002).
The submission must include a signed submittal letter by the state or
other jurisdictional authority that states whether the TMDL is being
submitted for a technical review. This indicates to the USEPA the
intent of the state to determine a TMDL in the future or for final
approval (USEPA 2002). If the USEPA does not approve the TMDL
in a reasonable time, the responsibility subsequently falls upon the
USEPA itself to determine and allocate the TMDL (Birkeland 2001;
USEPA 2018c).

Groups Involved in Determining the TMDL

To determine a TMDL, states or other jurisdictions (or a combina-
tion thereof for interstate waters) draft a water quality management
document (USEPA 2018c) that defines the scope of the problem.
In some cases, the problem may involve significant management
challenges. For example, where the impaired waterbody and con-
tributing watershed cross multiple jurisdictional boundaries, juris-
dictional cooperation is vital to allocate reductions to all loads
consistent with the laws and regulations of each jurisdiction. The
Chesapeake Bay TMDLs are exceptional examples of this type of
cooperation (USEPA 2010). Sometimes, differing political prior-
ities and legal requirements of the jurisdiction, the USEPA, and
other federal agencies may need to be considered. These issues can
hamper model selection because conflicting guidelines on model-
ing needs or disparate modeling approaches between different juris-
dictions can lead to confusion. Engagement with stakeholders and
experts helps in resolving these issues. In this paper, we delineate
the following groups:
1. States or other jurisdictions including territories and approved

tribes of the US. These are the delegated water quality manage-
ment agencies that are required under the CWA to list all im-
paired waterbodies and develop the TMDL. If the USEPA
does not approve a submitted TMDL document, then the
USEPA is itself responsible for developing the TMDL. When
cooperative effort is required to address multijurisdictional
watersheds or other complex TMDL determinations, the rel-
evant jurisdictions, interstate commissions, associations, and

other federal agencies are classified by the USEPA as partners
(USEPA 2020b).

2. Modeling team. This is the team of practitioners specialized in
watershed hydrologic and water quality and receiving water hy-
drodynamic and water quality models who may work for the
state or other jurisdiction, the USEPA, or an independent con-
tractor who perform the TMDL model selection and application
for the state or other jurisdiction.

3. Stakeholders. These include local communities, environmental
groups, nongovernmental organizations, economic development
groups and interstate organizations, industry, and trade associ-
ations representing dischargers who all benefit from the water-
body and watershed.

4. Experts. These should include environmental and industry
groups, research institutions, and universities who have experi-
ence and expertise developing and using TMDL models.
The state or other jurisdictions must have a water quality man-

agement document, a monitoring plan, a synoptic data collection
plan, and modeling necessary to develop the TMDL. These plans
benefit immensely from the support of the key experts and stake-
holders (Fig. 2). Engagement with experts during the model selec-
tion improves the reliability of the TMDL, and engagement with
stakeholders ensures transparency and public acceptance of the
TMDL. Engagements occur in four stages as follows (Fig. 2):
1. Compilation of background information. Typically, most of the

available monitoring and synoptic data, LULC patterns and
nonpoint-source loads, load-reduction priorities, performance
of best management practices (BMPs), and critical water quality
conditions are available to the modeling team through federal
and state water data portals and the National Pollutant Discharge
Elimination System (NPDES). Nonetheless, the modeling team
may benefit from early and continuous expert engagement if
there are other domain-specific data sources. Citizen science
monitoring can also help in this data collection step (Fig. 2).
Surveys of the general public, local civic bodies, domain ex-
perts, information clearing houses and water managers allow
the beneficial uses of the waterbody to be determined (Fig. 2).
This allows a priori agreement on the types of models to be con-
sidered as well as the synoptic data collection and quality assur-
ance plans needed for model development.

2. Consultation. Federal and state regulations require that public
comment opportunities be provided at different stages of the
TMDL determination, allocation, and implementation planning.
If stakeholders are engaged during model selection to reach a

Fig. 2. Steps in stakeholder engagement for TMDL model development.
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consensus on the TMDL process, above and beyond the legally
required public comment requirements, the number of public
comments and controversies regarding the interpretation of sim-
ulation results can be significantly reduced. During model se-
lection, experts such as members of the scientific community,
practicing engineers, domain experts, policymakers, and system
managers should be consulted to determine whether any water
quality and watershed models have been calibrated and applied
to the impaired waterbody and contributing watershed (Fig. 2).
Even if such models are developed or calibrated for processes
not necessary for TMDL determinations, the associated hydro-
dynamic and water quality observations should be useful to
calibrate simpler or more practical models or methods. The
modeling team could engage with focus groups of experts to
understand the limitations of specific models and prepare a list
of candidate models. During this stage, the modeling team can
also develop model sensitivity, calibration, and confirmation
tests. These strategies would help reduce time overheads, elimi-
nate repetition, and pare down unviable options. For example,
when determining the Chesapeake Bay TMDLs, the USEPA
Chesapeake Bay Program Office and the Chesapeake Bay Pro-
gram initially convened four expert modeling workshops. Dur-
ing the determination, allocation, and implementation planning
of the Chesapeake Bay TMDLs, follow-up expert panels were
convened to evaluate progress and provide technical guidance
(USEPA 2010).

3. Evaluation and feedback. During model selection, the modeling
team should brief stakeholders such as practitioners, interested
parties, and regulatory agencies on their findings (Fig. 2). The
modeling team can also acknowledge the feedback from the
state or other jurisdictions and all interested stakeholders in or-
der to build trust and achieve community acceptance.

4. Outreach. For transparency and increased cooperation, the mod-
eling team can make codes, model results, and documentation
publicly available to the scientific community and engineering
practitioners to facilitate independent review (Fig. 2). Propri-
etary codes used by some contractors and federal and state agen-
cies may be selected under unusual circumstances, such as when
no publicly available code reliably simulates the pollutant and
impairment. In these circumstances, some executable code must
be made available with the simulations used to determine, allo-
cate, and plan implementation of the TMDLs. With ongoing sci-
entific advances, maintaining a good outreach program with
experts will allow the modeling team to continuously update the
model (Fig. 2).

Modeling for TMDL Determination, Allocation, and
Implementation Planning

Models and methods that establish a cause-and-effect relationship
between loads and an impairment must be used to determine the
TMDL and allocate load reductions, and to develop the TMDL
implementation plan. Models used to develop TMDLs have
ranged from simple empirical models such as regression equa-
tions and load-duration curves, or analytical models such as mass
balances (McCutcheon 1989; Zhang and Quinn 2019), to more
reliable numerical models of critical condition focusing on spe-
cific hydrologic and impairment conditions (Zhang and
Padmanabhan 2019) and complex and/or sophisticated numerical
hydrologic, hydrodynamic, and water quality models (Martin
and McCutcheon 1999; ASCE TMDL Analysis and Modeling
Task Committee 2017; Camacho et al. 2019; Borah et al. 2019a;
Mohamoud and Zhang 2019; Yuan et al. 2020). In this paper, we
define complex models as those involving many physical, chemical,

and biological processes, and sophisticated models as those repre-
senting process with a high degree of integrity.

Models are used throughout the TMDL development to initially
understand the cause and effect of loading on impairment and the
impacts of BMPs on the water quality (ADEC 2017), in TMDL
determination (ADEM 2017), and on computation of MOS
(Ahmadisharaf et al. 2019). Models can also be used as decision
support tools to evaluate load reduction/allocation strategies
(ADEM 2017; Ahmadisharaf and Benham 2020). Models are also
suitable after implementing the TMDL for real-time or near-real-
time forecasting of water quality (Leisenring and Moradkhani
2012).

All of the model types have been applied to determine TMDLs
in contemporary applications. As elaborated in the next section and
listed in Table 1, 5,523 TMDLs have been listed in 315 USEPA-
approved reports between 2015 and 2020. As listed in Table 2,
regression equations and load duration curves have been used in
125 instances (about 40% of the reports), simple analytical mass
balance models have been used in 42 instances (about 13% of the
reports), hydrologic watershed models have been used in 68 instan-
ces (about 22% of the cases), and hydrodynamic and receiving
water quality models have been used in 80 instances (about 25%
of the reports). Typically, receiving water quality models have been
applied when hydrodynamics drive the impairment process for pol-
lutants such as temperature and dissolved oxygen (Table 2). For
pollutants such as nutrients, pathogens, pH, dissolved oxygen and
metals, watershed models and integrated models have been typi-
cally used (Table 2). For emergent contaminants, heavy metals,
and pathogens, empirical models have been used, whereas analyti-
cal model use has largely been restricted to the analysis of nutrients
and pathogens (Table 2).

Protocol for Model Selection

The availability of a wide variety of models makes the task of ap-
propriate model selection a challenging one. The more important
listings of some TMDL models (Shoemaker et al. 1997; Martin and
McCutcheon 1999; Borah and Bera 2003, 2004; Shoemaker et al.
2005; Muñoz-Carpena et al. 2006; Moriasi et al. 2012, 2015;
Martin et al. 2015; ASCE TMDL Analysis and Modeling Task
Committee 2017; Borah et al. 2019a; Camacho et al. 2019; Quinn
et al. 2019; Zhang and Quinn 2019; Yuan et al. 2020) are not fully
focused on the fundamentals of TMDL model selection. However, no
comprehensive model selection protocol exists. Limited federal, state,
and expert guidance exists in TMDL model selection for specific ap-
plications (Oregon Department of Environmental Quality, n.d.; Deas
and Lowney 2000; Imhoff 2003; DePinto et al. 2004; USEPA 2018d;
Water Environment Federation 2020). Thus, a principal motivation
for this paper was to develop a comprehensive, systematic, and holis-
tic selection protocol that was previously unavailable for TMDLmod-
eling in general. We defined this motivation based on in-depth
reviews of USEPA-approved TMDL reports during a recent 5-year
period and the available literature on model selection as elaborated
in the following sections.

Search for Existing Model Selection Protocol

To determine what, if any, model selection protocols were being
used regularly in TMDL development, we undertook the task of
assessing the state of the practice in TMDL model selection in
the US. As mentioned previously, we scanned 315 TMDL reports
with 5,523 TMDL listings approved by the USEPA between 2015
and 2020 in 44 states to identify the types of models being used, the
rationale for model choices, and the synoptic data collection efforts

© ASCE 04021031-5 J. Hydrol. Eng.
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Table 2. Types of TMDL models used in USEPA-approved reports between 2015 and 2020

Type of TMDL
model

Number
of TMDL
reports Pollutants Model reference

Empirical models
Regression equation 24 Sediment, turbidity, total suspended solids, temperature, dissolved

oxygen, pH, total phosphorous, ammonia, phosphate, chloride, noxious
aquatic plants, bacteria, fecal coliform, E. coli, boron, aluminum, copper,
selenium, silver, cadmium, mercury, uranium, polychlorinated
bisphenyls, simazine

USEPA (1991)

Load-duration curve 101 Sediment, turbidity, total suspended solids, total dissolved solids,
nutrients, nitrate, chloride, pathogens, Escherechia coli, Fecal coliforms,
enterococci, total phosphorous, boron, manganese, iron, copper,
selenium, zinc, lead, uranium, atrazine, terbufos

USEPA (2017)

Simple analytical models
CNET 1 Total phosphorous, total suspended solids, Escherechia coli Walker (1989)
FLUX32 1 Phosphorous Jensen and Freihoefer (2012)
ENSR-LRM 4 Phosphorous New Hampshire Department of

Environmental Services (2013,
2020), and Connecticut
Department of Environmental
Protection and ENSR (2004)

STEPL 11 Dissolved oxygen, pH, total phosphorous, sediment, nutrients, simazine USEPA (2020d)
USLE/RUSLE2 11 Sediment USDA (2016)
Unnamed mass-balance
model

14 Sediment, total dissolved solids, dissolved oxygen, pH, nutrients,
chloride, sulfate, pathogens, total coliform, fecal coliform, Escherechia
coli, enterococci, aluminum, cadmium, selenium, zinc, lead, trash

USEPA (2018c)

Receiving water quality models
Unnamed 1D
hydrodynamic model

1 Selenium Shoemaker et al. (2005)

Aquatox 1 Total phosphorous USEPA (2018a)
CE-QUAL-W2 1 Temperature, total phosphorous Cole and Wells (2018)
RMA2 1 Temperature, dissolved oxygen Aquaveo (2019)
SSTEMP 2 Temperature Bartholow (2000)
RBM-10 2 Temperature Yearsley (2009)
RMA11 2 Temperature RMA (2018)
SWMM 2 Total suspended solids, total phosphorous, Escherechia coli, copper,

zinc, lead
USEPA (2020e)

Unnamed 3D
hydrodynamic model

2 Dissolved oxygen, mercury Shoemaker et al. (2005)

Unnamed 1D
steady-state model

5 Dissolved oxygen, biochemical oxygen demand, selenium Shoemaker et al. (2005)

EFDC 8 Dissolved oxygen, ammonia, chlorophyll a Hamrick and Wu (1997)
Qual 2k 13 Dissolved oxygen Chapra et al. (2008)
BATHTUB 40 pH Walker (2006)

Watershed and integrated models
HydroWAMIT 1 Total suspended solids, dissolved oxygen, pH, total phosphorous Cerucci and Jaligama (2008)
SLAMM 1 Sediment, total suspended solids, phosphorous, fecal coliform PV and Associates (2019)
WinSLAMM 1 Total phosphorous PV and Associates (2019)
WASP 2 Total suspended solids, dissolved oxygen, pH, total phosphorous USEPA (2019b)
GWLF 5 Sediment, siltation Haith et al. (1992)
LSPC 7 Sediment, temperature, bacteria, chlorophyll a USEPA (2016)
MDAS 9 pH, Chloride, fecal coliform, aluminum, manganese, iron, selenium Jian et al. (2002)
SWAT 11 Sediment, total suspended solids, turbidity, nutrients, total phosphorous,

Escherechia coli, fecal coliform
Arnold et al. (2012)

HSPF 31 Sediment, total suspended solids, turbidity, dissolved oxygen,
biochemical oxygen demand, nutrients, total nitrogen, total
phosphorous, chlorophyll a, Escherechia coli, polychlorinated
bisphenyls

Bicknell et al. (2001)

Total 315 — —

Note: CNET = Reservoir eutrophication modeling worksheet; ENSR-LRM = ENSR-lake response model; STEPL = spreadsheet tool for estimating pollutant
load; USLE/RUSLE2 = universal soil loss equation/revised universal soil loss equation 2; RMA2 = resource management associates one dimensional/two
dimensional hydrodynamic model; SSTEMP = stream segment temperature model; RBM-10 = river basin model-10; RMA11 = resource management
associates two/three dimensional finite element model for water quality simulation; SWMM = storm water management model; HydroWAMIT =
hydrologic watershed model integration tool; WASP = water quality analysis program; GWLF = generalized watershed loading function; LSPC =
loading simulation program in C++; MDAS = mining data analysis system; SWAT = soil and water assessment tool; and HSPF = hydrological simulation
program-fortran.

© ASCE 04021031-6 J. Hydrol. Eng.
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in support of the modeling (Tables 1 and 2). These TMDLs covered
many types of waterbodies, including rivers, lakes, estuaries, and
beaches, and impairments due to biotic, abiotic and emerging con-
taminant pollutants, trash, physical alterations, and habitat degra-
dation within the water segments.

For compiling Tables 1 and 2, we searched through the Assess-
ment, Total Maximum Daily Load (TMDL) Tracking and Imple-
mentation System (ATTAINS) database, an exhaustive online
catalog maintained by the USEPA (2020a), the USEPA’s Region
1 database of TMDL reports (USEPA 2020c) and TMDL report
databases of 26 states as listed in Table 1. We could not find data
for six states during this period.

We found that although states predominantly use numerical
models of varying degrees of complexity and sophistication, on
several occasions, empirical and analytical models have also been
used. On rare occasions such as in the case of a trash and debris
TMDL (ADEC 2017), there have even been TMDLs approved that
did not have any modeling [Fig. 1(a)]. No rationale was specified for
model selection in 109 reports (35% of the reports). In 18 reports
(about 6% of the reports), the rationale was based on the prevailing
practice in the state. In 51 reports (about 16% of the reports), per-
ceived data limitations dictated model choice. In an additional four
reports (about 1% of the reports), the model choice was based on the
appropriateness to the available data [Fig. 1(b)]. In five reports (about
1% of the reports), resource constraints were cited as the reason for
using a particular model. Technical reasoning behindmodel selection
was provided in only 128 reports (about 40% of the reports). In 100
reports (35% of the reports), there were either no synoptic data col-
lection, or only sporadic ambient data on which to base TMDL de-
termination [Fig. 1(c)]. These patterns strongly indicate the need for
a systematic protocol on model selection and associated synoptic
data collection.

To determine what model selection guidelines are available in
the literature, a list was compiled of several publications on meta-
analyses of TMDL models and their applications. Specifically, we
looked for studies based on surveys of state agencies and practi-
tioners to identify challenges in model selection. Very few such
studies exist (Neilson and Stevens 2002; Cabrera-Stagno 2007;
Benham et al. 2008; Clark and Vanrolleghem 2010; Topp et al.
2020). We also studied documents describing the modeling and
data needs of various commonly used watershed and water quality
models (Deas and Lowney 2000; Muñoz-Carpena et al. 2006;
Keisman and Shenk 2013; Quinn et al. 2019; Water Environment
Federation 2020). In addition to these documents, we found guid-
ance documents on TMDL model selection (Oregon Department of
Environmental Quality, n.d.; Deas and Lowney 2000; Imhoff 2003;
USEPA 2018d). Unfortunately, in the best circumstances, these
documents typically were restricted to specific types of applications
and impairments, were nonexhaustive catalogs of models, were prac-
tical guides for model selection, or were engineering guides that did
not include practical considerations. Based on the survey papers,
meta-analyses, guidance documents, and TMDL reports, we found
that TMDL models are currently selected largely on an ad hoc basis.
Borah and Bera (2004) and Borah et al. (2006) also reached this
conclusion in their review of applications of nutrient and sediment
transport and watershed models.

Proposed Model Selection Protocol

When developing our proposed model selection protocol, we had
three considerations:
1. The model selection must be guided by fundamental principles

of parsimony and defensibility when applicable as well as by
practical criteria (discussed subsequently).

2. The model selection process must be inclusive. By this, we
mean that the process must be open and incorporate expert opin-
ions in such a manner that the choice of an optimal model
selected by applying the fundamentals of parsimony and defen-
sibility can be appropriately adapted at every stage of the model
selection process. By identifying practical criteria and engaging
with experts, the modeling needs and resources can be accounted
for and the original model choice can be adapted suitably.

3. The model selection protocol must be designed in a manner that
minimizes redundant information and process flows and allows
for concurrent evaluation of all the alternatives. Typically, mod-
elers iteratively select and explore modeling choices or choose a
model in an ad hoc manner. By engaging with experts and evalu-
ating all the options against an optimal model choice as more
data on practical criteria become available, much of the repeti-
tion can be avoided. There may still be unavoidable repetition
owning to situations in which the model documentation is un-
clear, or in which a model does not produce the expected results.
In these circumstances, the modelers would have to re-evaluate
the choice. However, by integrating the lean design principles
(Ballard and Zabelle 2000) with continuous expert engagement,
model selection can be carried out in an efficient manner.
McCutcheon (1989), Ambrose et al. (1990), McCutcheon et al.

(1990), Shoemaker et al. (1997), Martin and McCutcheon (1999),
the National Research Council (2001), Shoemaker et al. (2005),Mar-
tin et al. (2015), and Camacho et al. (2019) have presented extensive
information on receiving water quality model selection. However,
this information is not holistically organized into a general protocol.
Very few evaluations (Borah et al. 2019a) have focused on selection
of auxiliary watershed models to determine a TMDL or plan imple-
mentation. When changes in human population, economic activity,
LULC, climate, sea level, and policies are to be considered, there is
very limited guidance on model selection. We discuss and present a
holistic organization of TMDL model selection tasks in Fig. 3 and
focus on the technical criteria and management constraints to be
considered in model selection subsequently in Figs. 4 and 5.

In the flowchart in Fig. 3, we prescribe a general protocol for
model selection by carefully moving from initially listing an im-
paired waterbody to deploying an appropriate TMDL model
through a series of decision points (gray boxes). We recommend
considering both technical criteria and management constraints
(Figs. 4 and 5) that influence model selection (solid and hatched par-
allelograms, respectively, in Fig. 3) along with an optimal model
identified using fundamental modeling principles (choices and out-
comes in the upper-left quadrant of Fig. 3). We also recommend con-
tinuous and open engagement with stakeholders and experts (dashed
arrows in Fig. 3). By adopting these practices, it is possible to opti-
mize the flow of information (thin arrows in Fig. 3) and reduce
unnecessary iterations of the model selection tasks (thick numbered
arrows in Fig. 3). These tasks are:
1. gathering information on factors influencing model selection,
2. applying fundamental modeling principles,
3. identifying an optimal model,
4. evaluating the data and resource requirements for using this op-

timal model and planning and budgeting for the synoptic data
collection that will be required,

5. weighing practical considerations and selecting an appropriate
TMDL model, and

6. deploying the TMDL model.
The selection of the appropriate TMDL model requires evalu-

ating the modeling needs, the data, and the dynamics of the im-
pairment (choices and outcomes in the lower part of Fig. 3). The
protocol is general enough that practitioners can apply it to specific
problems with relatively minimal modification.

© ASCE 04021031-7 J. Hydrol. Eng.
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Fig. 3. Flowchart for TMDL model selection.
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Fundamental Model Selection Principles

The best practice when selecting models should be to ensure
that only models that have undergone rigorous review including
line-by-line evaluation of the code be considered in order to avoid
models with serious hidden systematic errors (McCutcheon 1983b).
However, it may not always be practical to satisfy this prerequisite.
Several technical and management factors further influence the se-
lection process. Model selection is thus largely a qualitative tradeoff
between fundamental principles and practical considerations. Ideally,
model selection should be guided by the following fundamental
principles:
• Parsimony. The simplest model with process integrity should be

selected (Thomann and Mueller 1987). At the same time, an
oversimplified model should not be used. Similarly, a model
with too many calibration parameters that overfits the data
should also not be used.

• Defensibility. A model containing a process must only be in-
cluded if the water quality forecast is significantly improved
by including that process (Martin and McCutcheon 1999).
With emergent water quality problems and modern tools to

tackle them, the fundamental principles of model selection can be

applied in a somewhat flexible manner. There are some applications
when the fundamental principles of model selection may be by-
passed when selecting candidate models for further evaluation:
• When a model has undergone rigorous peer-review and is shown

to be scientifically defensible. Over the last century, since the first
development of the Streeter-Phelps model in the 1920s, our
understanding of many underlying physical, chemical, and bio-
logical processes has advanced (Ambrose et al. 2009). Alongside
these fundamental scientific advances, the rapid improvements in
scientific computing (Ambrose et al. 2009), and in situ (Smith
2015) and remotely sensed data collection (Topp et al. 2020) over
the last 50 years has tremendously improved our ability to char-
acterize processes and represent them in models to calibrate and
validate receiving water quality and watershed models. When
models with a sound scientific basis undergo a rigorous update
cycle that synthesizes improved process understanding, better
data, implementation of refinements, and rigorous peer review
throughout their development, they eventually reach a point at
which they can be trusted to represent the underlying physical,
chemical, and biological processes through a parsimonious
formulation. Such models have invariably been shown to be

(a)

(b)

(c)

(d)

Fig. 4. Technical factors affecting model selection.
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defensible in numerous real-world applications. Models typically
reaching this stage of maturity include hydrologic models simu-
lating runoff as a function of rainfall, or hydrodynamic and water
quality models simulating soil erosion, sediment transport, and
transport and fate of pollutants with runoff and pollutants ad-
sorbed onto sediments [e.g., the models of Borah and Bera (2003)
and Borah et al. (2019a)]. Such models can be selected as can-
didate models for further consideration.

• When there is sufficient uncertainty in the quality of synoptic
data or when the underlying processes are poorly understood.
There might be circumstances such as when evaluating hydro-
logic processes with limited data coverage, when the effects of
multiple processes cannot be determined individually, or when
current monitoring and data collection limitations renders it dif-
ficult or even impossible to eliminate systematic errors in data
collection. In such circumstances, either resource constraints
limit the ability to gather synoptic data, or the science itself
has not advanced to a degree to which appropriate and adequate
data have been collected (Beven 2018). These situations can in-
clude emergent contaminants, complex coupled processes such
as habitat degradation and bioaccumulation and amplification
in aquatic foodwebs, and contaminants such as trash for which
physical processes are either not well-defined or have not yet
been translated to process-based models. In such cases, empirical
models such as parametric or black-box regressions, which have

been hypothesis-tested to establish cause-and-effect relationship
between loads and impairment, could be considered for additional
screening. In some cases, such as when useful synoptic data have
not yet been collected or there are severe resource constraints
faced by the modeling team, the prevailing practice may be to
use statistical relationships such as load-duration curves.
In all instances, model reliability for the specific application

must be tested by objective and scientifically defensible calibration
and validation using adequate synoptic data. If the final model
selection cannot be reliably calibrated and validated, the model se-
lection process must be repeated if there are other candidate models
that can be considered. If there are no other candidate models, then
the TMDL could be implemented in a phased manner while allo-
cating resources to collect the synoptic data required to develop a
more reliable model (USEPA 2006).

Key Factors in the Model Selection Process

Both technical criteria and management constraints must be consid-
ered in the TMDL model selection process apart from fundamental
principles (Benham et al. 2008). After applying the fundamental
model selection principles, technical criteria and management con-
straints must be applied in a rational sequence. The major technical
criteria and management constraints in TMDL model selection are
presented in the following two sections (Fig. 3).

(a)

(b)

(c)

Fig. 5. Management factors affecting model selection.
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Technical Criteria
Once a waterbody is 303(d) listed, technical criteria provide the
basis for applying fundamental principles to select the optimal
model. These include four main criteria.

The first main criterion is identifying an impaired waterbody
[Figs. 3 and 4(a); Table 3]. ATMDLmay be determined for a single
stream segment only when all the loading is from point-source
discharges into the watercourse. When there are nonpoint sources
or distributed point sources that must be managed, then the TMDL
may be determined for an entire basin that includes tributary water-
sheds. Estuarine and lacustrine waters require evaluation of both

upstream and downstream loads. Therefore, the type of watershed
is an important consideration in identifying the impaired waterbody
[first box in Fig. 4(a)].

In some cases, such as in the Willamette River in Oregon, there
may be distributed loads in tributary watersheds (Annear et al.
2004). In other cases, such as in Florida, there may be significant
surface water and groundwater interaction due to infiltration and
delayed seepage through a high-water-table aquifer (Borah et al.
2019a). Hydraulic BMPs may also impact impairment. In all these
cases, it is important to consider the relationship of the im-
paired waterbody with other waterbodies [second box in Fig. 4(a)].

Table 3. Impacts of technical criteria on TMDL model selection

Principal
criteria Examples Positive impacts Negative impacts

Impaired
waterbody

Waterbody type,
hydrological
conditions

Most system conditions represented by models
that capture typical, critical (dry years or dry
riverbeds), and extreme conditions (such as floods
and inundation)

• Critical and extreme events missed by
models that only cover typical range
of flows

• Episodic compliance failures
Pollutants Pollutants, loads,

levels of impairment
• Well-constructed models by thorough

accounting of PS and NPS through stakeholder
engagement, surveys, and careful evaluation of
GIS data sources

• TMDL with proper load-reduction allocations
or assimilation limits by incorporating cause-
and-effect relationships between loads and
water quality

• Incorrect specification of loads and
impacts of BMPs from models designed
without adequate domain expertise
about PS and NPS loads

• Poorly constructed load-reduction
allocations or assimilation limits, which
can lead to unrealistic TMDLs

• Impacts of BMPs on load reduction not
carefully considered

Data
requirements

Reliability Well-calibrated models with well-documented
error propagation

• Difficulty in calibrating and confirming
models due to unreliable data

• Difficulty in error propagation analyses
Resolution High-resolution data-driven models Low-resolution approximate models
Coverage Synoptic data coverage leading to model

calibration and confirmation at several spatial
locations and reduction of local and global errors

• Poorly sampled regions causing
potential global imbalances in the model

• Incorrect load allocations
Process-resolution High-frequency data collection at fronts and

gradients, among other physical processes,
leading to well-resolved models with accurate
representation of mechanistic processes

• Poorly resolved processes
• Unaccounted sources

Access Accurate data on NPS loads to build detailed
TMDL models

Unaccounted NPS loads leading to
unreliable load-reduction allocations or
assimilation limits

Uncertainty
about the future

Climate change • Models accounting for climate change by
incorporating results from climate predictions
robust to such change

• Medium- to long-term forecasting
• Useful for critical condition modeling in an

uncertain future

• Models not accounting for climate
change not useful for medium- to long-
term forecasting

• Not useful for critical condition
modeling in an uncertain future

Sea-level rise • Estuarine and coastal models driven by ocean
models robust to sea-level rise

• Models capable of evaluating BMP options
useful for planning for the future

Steady-state models not useful to predict
water levels, salinity, sediment transport,
and aquatic vegetation in the future or
evaluate BMP alternatives

LULC change Models with dynamic LULC layers, or with inputs
from LULC predictions incorporating changes in
PS and NPS loads

Steady-state models based on existing GIS
layers unable to account for changes in
loading in the future due to LULC changes

Socioeconomic
change

Models with flexible load limits and boundary
conditions suitable for exploring changing loads
and load-reduction allocations

Models with rigid load ceilings
(e.g., legacy codes) infeasible when load
sources and magnitudes change

Policy change • Models with built-in error margin reliable even
when policy changes

• Increased stakeholder confidence
• Model selection process with buffers for

funding lapses and staff reductions, among
other considerations

• Models specific to a particular policy
not reliable when significant policy
changes occur

• Potential for loss of support for model
development and maintenance

Note: BMP = best management practice; GIS = geographic information system; LULC = land use/land cover; NPS = nonpoint source; and PS = point source.
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In perennial waterbodies, hydrometeorological variability on hourly
to annual timescales can cause changes in the flow regimes that must
be considered [third and fourth boxes in Fig. 4(a)].

Additionally, about 3% of the gauged streams in the US are
ephemeral, intermittent, nonperennial, or nonfunctional ecosystems
(Zimmer et al. 2020) and do not currently need to be listed [fourth
box in Fig. 4(a)]. However, many of these streams are concentrated in
the Midwest and along the seaboards, and the water quality in these
types of waterbodies is a concern for communities living in these
regions. Ephemeral, intermittent, and nonperennial streams can
change from flowing to stagnant. This can lead to alteredwater chem-
istry and ecology that should be accounted for (Skoulikidis et al.
2017). Nonfunctioning ecosystems may take years to revive, and,
in such cases, ecological considerations drive modeling for hydraulic
and water quality restoration in these waterbodies (Hall et al. 2014).
When considering both perennial and nonperennial waterbodies, it is
important to engage with stakeholders to understand the beneficial
use of the unimpaired water to the community [fifth box in Fig. 4(a)].

The second criterion is identifying the pollutants causing im-
pairment [Figs. 3 and 4(b); Table 3]. This is the focus of the TMDL.
The types of loads must be enumerated, and their levels must be
quantified [first and second boxes in Fig. 4(b)]. Understanding the
nature of the impairment and the cause-and-effect relationship be-
tween the loads and the impairment is a necessary step in model
selection [third box in Fig. 4(b)]. For example, the fecal coliform
counts in the rivers of a rural watershed may be so large as to render
the water unfit for potable use or recreation (Riebschleager et al.
2012). Another example may involve fish eggs in a segment of a
river which have been rendered sterile by high water temperature
(Oregon Department of Environmental Quality 2000). Although a
load-duration curve or a fate and transport model would be appro-
priate for the former (Riebschleager et al. 2012), a heat budget model
would be a better option for the latter (Daniels et al. 2018).

The nature of the impairment also influences model selection
[fourth box in Fig. 4(b)]. If a persistent water quality problem such
as eutrophication due to agricultural runoff needs to be addressed, a
one-dimensional (1D) hydraulic model with a series of steady-state
solutions used in conjunction with a water quality model may be
considered. However, if an event-based problem such as a spike
in total suspended solids due to a spatially localized storm needs
to be addressed, then a two-dimensional (2D) or three-dimensional
(3D) hydrodynamic model may be considered. The choice of model
would also be influenced by the need to perform critical condition
modeling (Zhang and Padmanabhan 2019). The selected TMDL
model must be able to incorporate the water diversion, water treat-
ment, and BMP management actions that are currently implemented
and are being planned for the future to adequately simulate the water
quality within the waterbody [fifth box in Fig. 4(b)].

The third criterion is data requirement [Figs. 3 and 4(c);
Table 3]. Reliable data are required to parameterize, calibrate,
and test models. Ambient monitoring for various water quality
management objectives usually does not provide this data (Martin
et al. 1991). Various sources of data [boxes in the bottom row in
Fig. 4(c)] produce discrete, continuous, or episodic information
[third row in Fig. 4(c)] on different physical, chemical, and biologi-
cal processes with varying degrees of uncertainty and accuracy at
multiple spatial and temporal resolution [second row in Fig. 4(c)].
The data obtained from water quality monitoring, GIS layers, and
remote sensing of the watershed’s LULC patterns, topographic and
bathymetric surveys, soil surveys, soil maps, and stream gauges can
be used to develop and force TMDL models [left side of Fig. 4(c)].
If the TMDL models are part of an integrated system, then the re-
sults of other models may also be incorporated [right side of
Fig. 4(c)].

Infrequently, states collect and archive synoptic data every
5 years to calibrate and test WLA models (Mills et al. 1988) for
NPDES permit renewal, and research institutions may also collect
synoptic data (McKenzie et al. 1979). Hence, an independent
synoptic data collection plan must be formulated. The collection
of synoptic data would allow for a cause-and-effect understanding
of the load-impairment relationship in the watershed and the physi-
cal, chemical, and biological processes that affect impairment
within the waterbody. As indicated in Task 4 in Fig. 3, if the evalu-
ation of the synoptic data requirements and the formulation of the
data collection plan are integrated within the model selection pro-
cess, a high-quality TMDL model can be developed. Along with
the data itself, metadata on quality, accuracy, and precision allow
the modeling team to determine whether the data are usable and
evaluate the observational biases and errors.

Additionally, the spatial and temporal resolution, boundary con-
ditions, and loads should be evaluated to determine if they are ad-
equate to resolve the dynamic nature (steady state, cumulative,
periodic, or episodic) of the impairment. Boundary conditions
and loads should have a temporal resolution as close as possible
to the model time step to maintain process integrity (Sridharan
et al. 2018b). Results from climate, ocean, LULC, and population
models may also feed into the TMDL model. The resolution, ac-
curacy, and precision of these results must be quantified to ensure
that biases and uncertainty are correctly accounted for.

The fourth criterion is uncertainty about the future [Figs. 3
and 4(d); Table 3]. Anticipated changes in a region contribute to
the

P
LA term in a TMDL determination (Hoyer and Chang

2014). These changes can include sea-level rise in coastal water-
sheds and altered seasonal temperature and water quality trends and
increasing frequency of natural disasters everywhere due to climate
change [first box in bottom row in Fig. 4(d)]. The continuing ex-
ploitation of navigable waterways leads to altered channel mor-
phology and hydraulics and impaired water quality [second box
in bottom row in Fig. 4(d)]. LULC modifications due to rezoning,
shifts in cropping patterns, rapid urbanization, natural disasters, and
human population growth can also change the loads within water-
sheds [third and fourth boxes on the third row in Fig. 4(d)]. These
changes can either directly influence the TMDL load allocation
[first box on second row in Fig. 4(d)], or may result in changing
policies, new management practices, and novel vulnerabilities and
opportunities that managers have to consider [boxes on the third
row in Fig. 4(d)] that can be incorporated into the reserve capacity
[second box on second row in Fig. 4(d)].

For example, loads from point sources due to human popu-
lation growth and commercial activities can change over time
(LimnoTech 2015). In urban areas, increases in impervious surfaces
tend to intensify the peakedness of stormwater loads, whereas
agricultural development may result in nonpoint-source loads,
increasing at a slower pace than from equivalent areas of urban
development. Climate change can intensify stormwater loads dur-
ing floods and exacerbate water quality problems during droughts.
In coastal regions, sea-level rise can increase tidal inundation and
salinity intrusion and degrade littoral vegetation and coastal infra-
structure. A good TMDL model should be able to evaluate the
role of these stressors and planned BMPs on the water quality
(Herron 2017).

Management Constraints
Due consideration of practical criteria after selecting the optimal
model allows the modeling team to select an appropriate TMDL
model. There are three main key management constraints to be
considered.
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The first main constraint is due to available resources [Figs. 3
and 5(a); Table 4]. States or other jurisdictions and sometimes select
stakeholders use the characteristics of the impairment (i.e., the
waterbody type and key water quality constituents) to tentatively
determine the type of TMDL models to consider when making
funding requests. Water quality management plans approved by

the USEPA a priori and annual state budgets and other funding from
federal [e.g., USEPA 319 grants and Natural Resources Conser-
vation Service (NRCS) watershed restoration funds] and state pro-
grams, interstate compacts, and nongovernmental entities define
the priority and the resources available for TMDL determination.
These resources influence the type of TMDL model that can be

Table 4. Impacts of management constraints on total maximum daily load model selection

Principal
constraints Examples Positive impacts Negative impacts

Resource
constraints

Funding • Development of well-calibrated and
confirmed models supported by data

• Synoptic data collection and careful model
development

Constrained choice of TMDL models to inexpensive
ones that may not produce well-justified load-
reduction allocations or assimilation limits

Expertise • Using data appropriately and developing
strong synoptic data collection workflows

• Building detailed high-quality process-
based models

• Incorrect use of data resulting in representation
errors and high uncertainty in model results

• Inappropriate models resulting in large systematic
errors and biases

• Poorly motivated MOS and alternative scenario
development

Labor • Robust data collection
• Rapid scheduling of tasks, prototyping and

model development
• Cross-functional teams

• Overexerted workforce prone to mistakes and poor
task management

• Time and budget overlays
• Suboptimal data usage

Transparency • Minimizing process loops and optimizing
resource utilization

• Robust knowledge-transfer
• Culture of engagement, collaboration,

mentorship, and skill-transfer

• Suboptimal process workflows with poorly
informed stakeholder engagement

• Miscommunications and information siloing
• Working with outdated or erroneous data and

methods and poorly maintained models
• Stakeholder apprehensions about TMDL

Time Use of robust decision process, calibration,
and confirmation workflows and continuous
stakeholder engagement resulting in high-
quality TMDL models

Stringent time crunches due to litigation or other
drivers result in inferior quality TMDL models

Stakeholder
collaboration

Engagement • Thoroughly vetted models and community
buy-in with early and continuous
stakeholder engagement

• Robust developer and user groups for active
exchange of ideas

• Domain expertise and awareness of
watershed characteristics and
implementation constraints

• Apprehension and resentment toward TMDL when
engagement does not occur frequently and in a
conciliatory manner

• Poorly reviewed models and lack of awareness
about models

Community
participation

• Augmentation of data collection by citizen
science and self-reporting by polluters

• Synergistic cost-sharing by local PS
dischargers and water consumers

Lack of community support leading to difficulty in
gauging impact of TMDL

Scope of the
TMDL model

Model use • Scalable and user-friendly models allowing
evaluation of changes in water quality
criteria, beneficial uses, and exploration of
alternative management scenarios

• Planning for BMPs in stormwater and water
quality management

• Unstable and resource-intensive models not
suitable for decision support

• Inability to evaluate role of BMPs, resulting in
poorly designed load allocations and assimilation
limits

State-of-the-science • Interim management actions by
understanding current science

• Time allocation for science to develop

• Inappropriate application of complex models
• Loss of confidence in models

Regional issues • Success of TMDL driven by consideration
of local processes and drivers

• Well-vetted and data-driven modeling in
litigious environments

• Models developed for eastern and midwestern
systems in the US inapplicable elsewhere due to
more narrowly distributed flow ranges in the East
and Midwest

• Excessive litigation results in model development
mired in controversy

Model complexity Model parsimony for defense and clarity Indefensible and poorly generalizing models due to
unsupported model complexity

Note: BMP = best management practice; MOS = margin of safety; and PS = point source.
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selected. Although process-based models can provide high-
resolution watershed-wide coverage, they are also budget-, time-
and modeler skill-intensive [boxes in Fig. 5(a)].

The second main constraint is level of stakeholder collaboration
[Figs. 3; 5(b) and Table 4]. Voluntary stakeholder participation that
extends well beyond the legally required public comment periods
is an important factor in model selection. Ideally, stakeholders should
be involved in each step of the TMDL determination and implemen-
tation as well as model selection so that trust can be built about the
model simulations. For example, in California, oversight by the Little
Hoover Commission (Levinson 1993) encourages well-defined ties
between various agencies and state water boards. This oversight also
ensures regularly updated models to produce scientifically developed
and well-managed TMDLs (Little Hoover Commission 2009). With
strong stakeholder participation, the USEPA, NRCS, other federal
agencies, and other state and local agencies are likely to supplement
state funding and provide in-kind services for TMDL determination
and implementation of load reductions for nonpoint sources [first
box in Fig. 5(a)]. Some collaborating agencies may provide addi-
tional modeling expertise [second box in Fig. 5(b)].

Polluters may voluntarily increase point-source sampling to
supplement synoptic data collection or be compelled to more ac-
curately quantify loads by modifying the NPDES permits for point
sources and industrial stormwater nonpoint sources [third box in
Fig. 5(b)]. Nongovernmental organizations such as environmental
groups may deploy citizen water quality monitoring networks to
supplement synoptic data collection [fourth box in Fig. 5(b)]. Citi-
zen sampling might also be coordinated for fact finding and impair-
ment assessments after the TMDL implementation.

The third major contraint is the scope of the TMDL model
[Figs. 3 and 5(c); Table 4]. Although a TMDL model is useful
to determine the TMDL, it should ideally also be useful for evalu-
ating changing water quality and beneficial uses. When used for
TMDL determination, ideally, the state or other jurisdiction must
deploy models of suitable complexity and sophistication required
to establish the cause-and-effect relationship between loads and im-
pairment. In challenging flow regimes, this could even involve the
use of research codes [first box in Fig. 5(c)]. Depending on the state
authority to manage pollution sources and the state allocation pri-
orities, sometimes the TMDL model may also be used to conduct
comprehensive evaluations of multiple load reduction allocation or
waste assimilation alternatives. Additionally, the model may also
have to be used to evaluate the impact of BMPs on nonpoint-source
load reduction and water quality. In these instances, these models
may be used as decision support tools.

Typically, scalable models which require fewer computational
resources to run with user-friendly interfaces are preferable as de-
cision support tools than very sophisticated 2D and 3D numerical
models [second and third boxes in Fig. 5(c)] (Huber et al. 2006;
Sparkman et al. 2017; USEPA 2018b). When the model is to be
used primarily as a forecasting tool, then multiple model instances
with slight perturbations of the model parameters is required
(Reichle 2008). In such cases, a good data assimilation technique
would compensate for a simple cause-and-effect model (Daniels
et al. 2018).

Model Selection

Identifying the impairment and flow regimes over which a TMDL is
applicable allows for model selection fundamentals to be applied
to formulate an optimal model (Fig. 3). Formulating this optimal
model early ensures that iterations in the TMDL model selection
will be minimized. An appropriate TMDL model can subsequently
be adapted from the optimal model choice based on other criteria.

Several options exist for TMDL determination. We subsequently list
the major classes of TMDL models.

Types of TMDL Models
In this model selection protocol, we strongly advocate
for the use of cause-and-effect models for reliable TMDL determi-
nation, allocation, and implementation planning. Such models sys-
tematically link all significant loads to impairments and are useful
for understanding the underlying process mechanisms within the
system. Practical and reliable cause-and-effect models provide the
best opportunity to extrapolate TMDLs beyond the range of data
available to calibrate and confirm the models.

The type of cause-and-effect model selected is based on the
nature of the waterbody, flow regime, pollutants causing impair-
ments, loading conditions, and other technical and management
considerations. In this paper, we discuss three types of models
to guide the selection process (bold boxes in Fig. 3).

Numerical process models are the first type. These are mecha-
nistic models of the receiving waterbody and contributing water-
shed in which the laws of conservation of mass, momentum,
and heat and some empirical or semiempirical kinetic relation-
ships must be numerically simulated to relate loads to impairment
(Bowie et al. 1985; Martin and McCutcheon 1999). Typically,
when flows and loads do not vary rapidly over time, steady-state
models may be used. Pseudodynamic models may be used when
flows and loads change slowly over time or are likely to occur at
distinct levels.

For example, such models are useful when diurnal eutrophica-
tion violates dissolved oxygen and nutrient standards for part of
the day (Brown and Barnwell 1987). Dynamic models are typically
necessary when rapidly changing episodic and periodic impair-
ments cannot be simulated as a critical condition during which
some averaging is possible to simplify simulations. If extensive
monitoring of an impairment is not available to adequately define
a critical condition, then a practical, reliable dynamic model must
be selected (Zhang and Padmanabhan 2019).

The number of spatial dimensions necessary to reliably simulate
an impairment and distinguish loads is another vital model selec-
tion criterion (Martin and McCutcheon 1999). For unstratified
ponds, small lakes, or short river reaches, zero-dimensional or com-
pletely mixed models may be used when the violation of standards
are consistent over the entire water segment. For long river reaches
and shallow, unstratified, run-of-the-river reservoirs, 1D models
that are resolved in the along-stream direction may be adopted.
For deep lakes and estuaries in which stratification and vertical
mixing processes are important, 1D models with vertical resolution
may be selected. When wide, shallow impaired waters are laterally
and longitudinally variable, 2D models should be selected. In im-
paired waters with complex hydrodynamics and physical, chemi-
cal, and biological processes varying longitudinally, vertically, and
laterally, 3D models are strongly recommended.

Often pollutants enter impaired waters as a complex mixture
from point and nonpoint sources. If the receiving water model
domain cannot be extended into tributaries to distinguish and
separate the water quality effects of each point source and classes
of manageable nonpoint sources, auxiliary watershed models are
necessary to distinguish manageable nonpoint-source loads during
TMDL implementation (Effler et al. 2002; Annear et al. 2004; Liu
et al. 2008). These watershed models can include dynamically vary-
ing loads. They can also include annualized loads that are approxi-
mated as annual averages, seasonally varying loads, or constant
yield loads that are steady). Depending on the spatial resolution of
lumped parameterizations within the watershed, these models lose
process integrity or realism to some degree.
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Numerical models may be further classified into
• Receiving water quality models. These models simulate hy-

drodynamic and water quality processes within the waterbody
to link loads to impairments (McCutcheon 1989; Martin and
McCutcheon 1999; Camacho et al. 2019). Receiving water
models are selected without watershed models when all point
and nonpoint sources discretely discharge directly into the re-
ceiving water segments and are not attenuated between source
areas and the receiving water (McCutcheon 1989; Sparkman
et al. 2017). These models can also be used to evaluate the
assimilative capacity of an impaired waterbody (Chapra 2003).
More recently, the use of receiving water quality models has
started enabling the management of nonpoint sources (Camacho
et al. 2019).

• Watershed models. These auxiliary models of landscape hydrol-
ogy may be necessary to distinguish all significant, manageable
point-source and nonpoint-source loads including manageable
natural background loads, and if pollutants are significantly
attenuated between source areas and the receiving water impair-
ments during overland flow, interflow, and groundwater recharge
of streams (Huber et al. 2006). Watershed models require spec-
ifications of precipitation, land use, impervious areas, slopes, soil
types, drainage area, and other information (Borah et al. 2019a).
These watershed models simulate the impact of BMPs on the
water quality of runoff and stream recharge using semiempirical
and fully empirical approximations (Huber et al. 2006; Sparkman
et al. 2017; Borah et al. 2019a). Over the last 3 decades, the de-
velopment of improved watershed models has faciliated more ac-
curate modeling and managing of point sources.

• Integrated models. Integrated models can either be models in
which multiple processes are represented within one model
or a combination of different models (Mohamoud and Zhang
2019). Such models may be dynamically linked such that mod-
els communicate information with each other throughout the
simulation. For instance, coupled surface water and ground-
water models fall under this category. Such models may also
be loosely linked, such that the outputs of one model are used
to drive another model. Coupled water resources and socioeco-
nomic models, or hydrodynamic and ecological models, are ex-
amples of such loose linkages (Mohamoud and Zhang 2019).
These are used when there are many water quality constituents
of interest with multiple chemical and biological cycles, or when
multiple waterbodies have to be included. These approaches
may also be used when the models are used to achieve multiob-
jective management goals throughout the watershed (Mohamoud
and Zhang 2019).
Numerical models may be further classified on the basis of

complexity and sophistication. In this paper, we define complexity
as increasing with the number of modeled processes and sophisti-
cation as increasing with improving process integrity. Models such
as Hydrological Simulation Program-Fortran (HSPF) (Bicknell
et al. 2001) that can be executed in a user-friendly environment
such as better assessment science integrating point and nonpoint
sources (BASINS) (USEPA 2019a) can include many physical,
chemical, and biological submodels that are relatively simple.When
nonpoint-source loads throughout the watershed are major drivers of
impairment, such models may be considered. On the other hand,
hydrodynamic models such as MIKE11 (Havnø et al. 1995) or
Stanford Unstructured Nonhydrostatic Terrain-following Adaptive
Navier-Stokes Simulator (SUNTANS) (Fringer et al. 2006) are more
sophisticated. When transport and mixing processes within the water
column are dominant drivers of impairment, and when waste as-
similation in the waterbody is to be represented, these models may
be considered. Sometimes, models such as the Environmental Fluid

Dynamics Code (EFDC) (Hamrick and Wu 1997; Tetra Tech 2002),
National Center for Computation Hydroscience and Engineering 2D
(CCHE 2D) (Zhang and Jia 2013), or Delft-3D (Deltares 2012)
suites can include sophisticated hydrodynamics as well as a complex
set of chemical and biological process models.

The number of dimensions of the waterbody to be represented
and the skill of the modeling team determine the sophistication of
numerical models. Skilled practitioners can use models that resolve
hydrodynamic processes but also require advanced computing and
programming ability [e.g., SUNTANS, Semi-implicit Cross-scale
Hydroscience Integrated System Model (SCHISM) (Zhang et al.
2016), unstructured three dimensional model (UnTRIM) (Cheng
and Casulli 2002), Delft-3D]. These models typically have higher
process integrity but can be less stable than simpler hydraulic or
hydrologic models [e.g., Hydrologic Engineering Center—River
Analysis System (HEC-RAS) (USACE 2016)]. The latter class
of models allow large numerical diffusion to stabilize the model
results in coarse resolution domains but seriously compromise
process integrity as the resolution is increased (Sridharan et al.
2018b).

Analytical process models are the second type. These models
include mass balances and solutions of the transport equation that
mechanistically link loads to impairment (Martin and McCutcheon
1999; Zhang and Quinn 2019). In very rare cases, such models
might be used for TMDL implementation planning in small tribu-
taries or subwatersheds to account for nonpoint-source loads that
do not vary significantly over time (Zhang and Quinn 2019).

Empirical models are the third type. These are models that relate
loads to impairment in a structured but not mechanistic way. Para-
doxically, empirical models are among the most data-intensive as
very large monitoring datasets are required to build reliable models.
These datasets must comprise of long time series of multiple water
quality constituents and physical, chemical, biological, hydrolog-
ical, pedological (related to the soil), meteorological, and land use
characteristics. In principle, these empirical relationships are only
applicable within a specific range of variable values that were in-
vestigated to develop them. These methods are useful when
TMDLs are being determined for novel pollutants or when trans-
port and fate processes are unknown. Empirical models include the
following types:
• Parametric models. These relationships between loads and im-

pairment are developed by regression. For example, the spatially
referenced regressions on watershed attributes (SPARROW)
model relates loads in discrete areas within a watershed para-
metrically to water quality in receiving waters and has been used
to establish TMDLs for total nitrogen and phosphorous in New
England’s rivers (Moore et al. 2004).

• Stochastic models. These are models that include estimates
of the variability in the water quality due to variability in the
loads. For example, the Source Loading and Management
Model (SLAMM) and Water Erosion Prediction Project
(WEPP), respectively, include variability in runoff and meteoro-
logical inputs to predict a range of water quality levels
(Shoemaker et al. 2005).

• Statistical relationships. These include flow-duration and load-
duration curves (USEPA 2007) that describe the statistics of
the observed water quality. Load-duration curves can be used
when flow dilution dominates water quality in gauged streams
(USEPA 2007). The load-duration curve has been used to estab-
lish a TMDL for fecal coliforms in the Pee Wee River Basin in
South Carolina (SCDHEC 2005).

• Black-box models. These include models built using machine
learning and artificial intelligence techniques such as genetic
algorithms, artificial neural networks, and deep learning, among
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others. These relate loads to impairment via complex nonlinear
hidden functions that cannot be easily described. Although these
approaches have been shown to have improved performance in
predicting water quality when compared with regression mod-
els when the loads, hydrology, meteorology, and BMPs are
known a priori (Tufail et al. 2008), they typically require high
degrees of expertise in data sciences to implement, understand,
and justify. The ASCE TMDL Analysis and Modeling Task
Committee (forthcoming) found no evidence that these meth-
ods have actually been used to determine TMDLs or that they
will begin to be used frequently in the near future. There is
likely to be much greater potential in applying these techniques
in conjunction with numerical or analytical approaches to up-
date specific model assumptions based on the data (e.g., Whig-
ham and Crapper 2001).

Optimal Model Formulation
First, the hydrodynamic processes in the waterbody need to be
understood (first choice in Fig. 3). For a single water segment
or a whole basin, a receiving water quality or a receiving water
quality model and an auxiliary watershed model may be optimal,
respectively. If different types of waterbodies are interconnected,
such as a series of lakes and rivers, then integrated models may
be optimal (Mohamoud and Zhang 2019). When selecting the mod-
eling approach, the complexity and sophistication of the optimal
receiving water quality model must also be determined (Camacho
et al. 2019).

For instance, if the objective is to understand and mitigate
eutrophication in a deep lake associated with seasonal stratification
and overturn dynamics, a steady state lake eutrophication model
such as BATHTUB (Walker 2006) or a vertical 1D model such as
Dynamic Reservoir Simulation Model–Water Quality (DYRESM-
WQ) (Hamilton and Schladow 1997; Schladow and Hamilton
1997) may be appropriate. However, in a lake or reservoir where
significant point-source and nonpoint-source pollution contribute
to lake pollution (e.g., agricultural and animal husbandry activities
on the shores), a 2D model such as CE-QUAL-W2 (Cole and Wells
2018) or a 3D model such as EFDC (Hamrick and Wu 1997; Tetra
Tech 2002; Zou et al. 2006), which allows these sources to be
explicitly represented, should be considered.

Next, the complexity of the impairment needs to be assessed
(second choice in Fig. 3). Here, consideration of the impairment
failing the designated use criteria may require simulating addi-
tional impairments that influence the system. For example, in
California, a TMDL to improve dissolved oxygen conditions in
a 32-km-long (20-mi-long) deep shipping channel for endangered
migrating salmon in the Sacramento–San Joaquin Delta required a
significant reduction in algal loading from contributing water-
sheds. Algae in the shallow river system settled in the deeper,
wider ship channel, turning to periphyton and exerted an oxygen
demand. However, a policy to reduce agricultural return flows to
the lower San Joaquin River to reduce nutrient loads that stimulated
algae growth caused an increase in salinity at a monitoring station
upstream of the estuary. In this instance, control actions that were
best suited to cost-effectively address one TMDL made it more dif-
ficult to achieve another.

In this case, salinity and phytoplankton growth in both the river
and estuary were simulated with the Watershed Area Resource
Management Framework (WARMF) (Herr and Chen 2012). The
framework allowed a simple 1D hydraulic model in the river to in-
terface with a 1D hydrodynamic model in the Delta. WARMF also
includes a consensus module to support informed management de-
cisions, which better presents the engineering module simulations
for technical and nontechnical stakeholders. An integrated approach

comprising of a cascade of models was thus necessary to simulate
the fate and transport of more than one pollutant responsible for
impairment.

Alternately, a TMDL may have to be developed for ecological
objectives that require an understanding of the biology of a single
species or an entire food web or ecosystem. In such cases, agent-
based (Sridharan et al. 2018a) or individual-based models (Railsback
et al. 2013) for the former or ecosystem models such as Ecopath with
Ecosim (EwE) (Steenbeek 2016) for the latter may be selected.

Choice of TMDL Model
The actual TMDL model chosen depends on both the optimal
model and practical criteria. Based on the complexity of the physical,
chemical, and biological processes, the data required to parametrize
those processes (e.g., high-resolution river-bottom substrate maps to
set roughness values in a 3D hydrodynamic model), the expected
changes in the region over time, and modeling skill at the state or
other jurisdiction, different model types may be selected (third and
fourth choices in Fig. 3). The time-varying nature of the flows and
loads then determines whether the chosen model is steady-state,
pseudodynamic, or dynamic (fifth choice in Fig. 3).

Model Inputs and Outputs

The type of model chosen dictates what type of inputs and param-
eters are required to run the model. For example, watershed models
play an important role in linking nonpoint-source loads to impair-
ment, and require meteorological, land use, hydrologic, topo-
graphic, pedological and morphological data inputs (Borah et al.
2019a). On the other hand, receiving water quality models require
higher frequency inputs from point and nonpoint sources.

Outputs from numerical models are typically time series of flow
and water quality constituents at discrete locations. Analytical so-
lutions are functions that describes the evolution of water quality
variability continuously in space and time. The results of empirical
models are relationships among flows, loads, and impairment at one
or more locations. To correctly understand these results and quantify
the MOS, both the spatial and temporal resolution of the model must
be matched to that of the synoptic data. This ensures that represen-
tation errors are avoided (Oke and Sakov 2008). For example, a con-
tinuous temperature sensor at a location may sample several parcels
of flowing water in each sampling window. Therefore, model re-
sults should be averaged over the same time window to reduce rep-
resentation error. Correctly representing the model results in more
reliable water quality forecasting, TMDL determination, MOS es-
timation, and implementation modeling.

Discussion

TMDLmodel selection involves the interaction of various factors at
different phases of the TMDL. We identified seven factors that im-
pact model selection. The relative importance of factors shown in
Figs. 3–5 is affected by the interplay among the practical criteria for
successful TMDL modeling (Cabrera-Stagno 2007; Benham et al.
2008). By carefully considering these factors, modeling teams can
develop parsimonious and defensible TMDL models chosen in a
cost-effective manner. In Table 3, we list various benefits accrued
with careful consideration of the technical factors, as well as draw-
backs without due consideration of these factors on model selection
and ultimate success of the TMDL. Similarly, in Table 4, we list the
potential benefits of considering management factors versus
not considering them. We compiled these tables using information
in several targeted guidance documents on TMDL development
and surveys of TMDL applications (Deas and Lowney 2000;
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Neilson and Stevens 2002; Imhoff 2003; Cabrera-Stagno 2007;
Clark and Vanrolleghem 2010). With a synergy of these factors,
the modeling team can choose among process-based models with
different levels of complexity and sophistication to provide an ap-
propriate level of detail for analysis.

The type of model ultimately chosen will influence the effec-
tiveness of the TMDL. When nonpoint-source loading is to be
represented accurately and when processes within the water seg-
ment are important, receiving water quality models of appropriate
sophistication and complexity may be selected (Camacho et al.
2019). When loads are distributed throughout the watershed and
there are many mechanistic processes that influence impairment,
additional auxiliary watershed models may be selected to model
the loads (Borah et al. 2019a). Owing to climate change and rapid
urbanization, the frequency and intensity of natural disasters are
increasing everywhere (Ramaswami et al. 2018). This will result
in increasingly more common occurrences of critical conditions.
Therefore, the selected TMDL model must be able to represent
steady-state or dynamic critical conditions (Zhang and Padmanabhan
2019). As the interfaces between different sciences blur and solutions
to challenging human problems become transdisciplinary, there
will be increasing dependence on integrated or linked models
(Mohamoud and Zhang 2019).

In all instances, every effort must be made to select process-
based cause-and-effect models. Parsimonious process-based nu-
merical models developed with high-quality data are necessary
to reliably forecast water quality and allow feasible load-reduction
allocations and waste limitations. More complex models can re-
solve many physical, chemical, biological, and ecological path-
ways in nature and can be useful to link nonpoint-source loads
within the watershed to impairment. More sophisticated models
can simulate the water column with greater process integrity. Even
though TMDLs have been determined using analytical and empiri-
cal methods in a limited number of cases (e.g., Moore et al. 2004;
SCDHEC 2005; Shoemaker et al. 2005), the state or other jurisdic-
tion should always work toward collecting synoptic data to build
high-quality numerical models.

When selecting an appropriate TMDL model, it is crucial to
budget for synoptic data collection. At the same time, limitations
in data collection due to social and cultural taboos or pushback
from local communities may hinder requisite data collection. For
example, in the Sacramento–San Joaquin Delta, one of the most
significant sources of uncertainty in flow and nonpoint-source load-
ing is the volume of pumped diversions and agricultural runoff
(Sridharan et al. 2018b). In such cases, the state or other jurisdiction
should try to actively engage with local stakeholders to augment
synoptic data collection through increased self-reporting. In certain
instances, the signal of certain processes may be very difficult to iso-
late. For example, in macrotidal estuaries, subtidal density-driven cir-
culation may not be discernable within the tidal fluctuations in flow
(MacCready and Geyer 2010). These limitations are not easily over-
come with even a well-designed synoptic data collection effort. In
such cases, the most parsimonious and defensible model must be
chosen even if there might be a more complex or sophisticated model
that can represent such undiscernible processes.

Conclusions

We have developed and presented a comprehensive protocol and
associated flowchart (Fig. 3) to aid researchers and practitioners
in selecting a parsimonious and defensible model for determining
TMDLs given practical criteria. This protocol includes seven classes
of factors that affect thewater qualitymanagement program: (1) types

of waterbody impairment, (2) pollutants that cause the impairment,
(3) data requirements, (4) uncertainty about the future, (5) resource
constraints, (6) level of stakeholder collaboration, and (7) scope of
the TMDL model.

It is clear from the TMDL reports published within the last
5 years that systematic model selection processes based on well-
justified rationale and supported by a synoptic data collection plan
are not currently being extensively applied (Fig. 1). Several at-
tempts have been made in the past to catalog some models that
can be adapted for determining TMDLs. More recently, a series
of papers appeared in a special collection of the ASCE Journal
of Hydrologic Engineering on TMDL analysis and modeling in
which the applicability of numerous state-of-the-art models were
discussed in relation to the types of impairment problems. In this
paper, we build on this body of work by providing a comprehensive
scientific basis that includes both technical and management crite-
ria for appropriate model selection.

Throughout this paper, we list several examples of TMDL
model selection. The simplest empirical and analytical models
are not very useful in determining TMDLs but can be used for
an initial qualitative assessment of the impairment. Statistical, sto-
chastic, and black-box models could be also useful in initial assess-
ment and in certain flow-dilution-dominated impairments be used
to determine the TMDL. However, these models are data intensive
and not very useful in establishing cause-and-effect relationships
between loadings and impairment. At the same time, about 13%
and 40% of the USEPA-approved reports on TMDLs developed
between 2015 and 2020 have relied on analytical and empirical
models, respectively.

However, there are encouraging indications that in the case of
pathogen, nutrient, algae, sediment, temperature, and heavy-metal
impairments, numerical process-based models are being increasingly
used to determine TMDLs (Table 1). One and two-dimensional
numerical process–based models are the most versatile and should
ideally be used to determine TMDLs but have significant data and
resource requirements. Sophisticated three-dimensional numerical
models are very useful for targeted studies of a small part of a water-
shed or a single waterbody but are extremely resource-intensive and
typically do not translate into versatile decision support tools. The
rate of computational capacity increase in the last 3 decades has
not kept pace with the extremely resource intensive nature of sophis-
ticated 3D numerical models (Fringer et al. 2019). Therefore, it ap-
pears that 1D and 2D or even coarse-resolution 3D models on with
simple computational algorithms complemented by a strong synoptic
data collection programwill continue to support management actions
for the foreseeable future.

We formulated the model selection protocol with lean design
principles, so that (1) minimal looping of iterative model selection
tasks is ensured, (2) information siloing and suboptimal interac-
tions of cross-functional teams are minimized by specifying proto-
cols of engaging with stakeholders and experts during the TMDL
model selection process, and (3) optimal resource utilization is en-
sured by incorporating the data collection requirements of the op-
timal model into the practical criteria affecting the state or other
jurisdiction. Urban sprawl means that over the coming decades, sus-
tainable cities of the future will form a significant fraction of water-
sheds. The use of more complex and sophisticated integrated models
that link water quality with environmental, ecological, and socioeco-
nomic models will become increasingly necessary to determine and
implement meaningful TMDLs. We hope that the application of this
protocol and the associated flowchart will result in optimal TMDL
model choices under a nimble management landscape that will rise
to meet the challenges of an uncertain, yet exciting future.
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